
Exponentials in Physics 
 

 
The exponential function crops up all over physics. In this module, we will look 
at why this is, see what an exponential means in terms of the underlying 
physics, and look at some practical examples of working with exponentials. 
 
The exponential function 
 
The exponential function is written as ex or exp(x) , where e is an irrational 
number  
 
e ≈ 2.71828. 
 
The exponential acts as an ‘inverse’ of the natural logarithm (the logarithm to 
base e). 
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Example 1: radioactive decay. 
 
Consider a box containing a population of 1000 radioactive nuclei. In each 
time interval, ∆t, each particle has a 1 in 10 chance of decaying. We cannot 
make a predication about an individual nucleus, but we can say how the 
population will change as a whole. 
 
In the first time interval, if each particle has a 1 in 10 chance of decaying, we 
can say that 100 of the 1000 particles will decay. Fill in the table below to 
show how this process continues for 10 time intervals. 
 
Time interval Number at start Decays Number at end 
1 1000 100 900 
2 900 90 810 
3 810 81 729 
4 729 73 656 
5 656 66 590 
6 590 59 531 
7 531 53 478 
8 478 48 430 
9 430 43 387 
10 387 39 348 
 
Plot your values with your plotting system of choice (excel, graph paper, 
whatever) and verify that the behaviour is roughly as you would expect… you 
should see a slow decline from the initial population. 
 
Verify the plots are OK. Has anyone tried to plot error bars? 
 
Now transfer your values from the table above into the first column of the 
table below. We will now try to generate a model (a mathematical description) 
of the behaviour of our population of radioactive particles to compare to the 
results. 
 
From your plot, it should be obvious that the population change is not a linear 
one! In fact, the obvious model to try is that of exponential decay: 
 

teII λ−
= 0     (1) 

 
where I0 is the initial population, λ is the decay constant describing the rate of 
decay of the population, and t is the elapsed time. 
 
We can estimate the decay constant from the result of the first time interval: 
 
When t = 1, I/I0 = 0.9, and so 10536.0)9.0ln(9.0 =−=⇒= − λλe  
 



Calculate the values of the model, and insert them in the table below: 
 
Time interval Number at end Model 
1 900  
2 810  
3 729  
4 656  
5 590 590.5 
6 531  
7 478  
8 430  
9 387  
10 348  
 
Verify that the model is a good description of the situation. 
 
It should be very close! There is absolutely nothing wrong with the model, and the ‘empirical’ 
values are only limited by the width of each time bin and maybe some rounding errors. 
 
So far, we have used the decay constant, λ, to describe how fast the decay 
occurs, by modifying the speed at which the exponential affects the initial 
population. It is also common, especially for radioactive decay, to discuss the 
half-life of the decaying isotope. This is defined as the time after which one 
half of the population has decayed.  
 
Use your graph to estimate the half-life for this p opulation (in units of 
‘time intervals’) 
 
Again, this should come out pretty close, all is needed is to read off the point corresponding to 
500 nuclei left, which should be about 6.5 time units (actually 6.57) 
 
Looking at this more mathematically, there is a straightforward relationship 
between the half-life and the decay constant.  
 
Use equation (1) above to get a formula for the half-life of the population in 
terms of the decay constant λ. 
 
Half-life = ln2 / lambda ; obtained by just inserting values of I=I0/2 and t = half-life in the 
formula above 
 
Compare the half-life given by your formula above and your estimate from the 
graph. 
 
The values should come out very close; make sure you understand that the time units are 
arbitrary – there is no need to use seconds/days/years to make the equations work! 
 
In this first example, we used an exponential to describe a situation when a 
population is subject to a constant probability per unit time. 
 
 



Example 2 
 
Let’s now look at a different situation - the absorption of X-ray photons in a 
block of material.  
 
For the sake of simplicity, we will assume that the photons will interact with 
the material in just one way: photoelectric absorption. In a photoelectric 
absorption event, the X-ray is completely absorbed, transferring all its energy 
to an electron in the absorber material. The probability of a photoelectric 
interaction depends only on the photon energy and the number of electrons 
which the photon encounters, so the probability is constant per unit distance 
while the photon moves through a material of constant density.  
 
Consider a beam of photons travelling through a block of lead. To model the 
photon interactions, we divide the lead into a number of virtual slices, and 
calculate the number of photons that interact in each slice. 
 

1000 in ? out

Slice no….1           2         3         4         5         6          7
 

 
Consider how a population of 1000 photons survives its passage through the 
slices of lead.  
 
Assume first that each photon has a fairly high probability of absorption of 0.4 
per slice; this is a reasonable model for low energy X-rays 
 
Slice number Photons 

absorbed 
Photons surviving 

1 400 600 
2 240 360 
3 144 218 
4 88 130 
5 52 78 
6 29 49 
7 20 29 
 
What are the key features of the absorption?  
Where are most of the photons absorbed?  



What fraction of the original population has passed completely through the 
lead. 
 
Almost all the photons are absorbed, as we would expect for X-rays in lead. 
Only 3% of the original photons survive. 
Half the photons are lost in the first two slices, 80% in the first three, yet some still survive… 
 
Now repeat this calculation, but now using a probability of absorption of 0.05 
(or 1 in 20) per slice; this is a more appropriate model for higher energy 
gamma-rays. 
 
Slice number Photons 

absorbed 
Photons surviving 

1 50 950 
2 48 902 
3 45 857 
4 43 814 
5 41 773 
6 39 734 
7 37 697 
 
Again, what are the key features of the absorption? 
 
Now the number absorbed is almost constant as a function of slice number (it’s exponential, 
but a very shallow one), and almost 70% or the photons penetrate the lead. 
 
Make two plots which allow you to compare the two cases. On the first plot, 
plot the number of photons absorbed as a function of slice number (i.e. 
distance). On the second, plot the number of photons surviving as a function 
of slice number. 
 
What is the average distance a photon penetrates into the lead for the high-
attenuation and low-attenuation cases? 
 
This illustrates an interesting point – it is not simple to define the ‘range’ of a photon being 
absorbed in this way. The mean free path can be approximated by 1/lambda 
 
Photon absorption is usually modelled by an exponential (how did you guess!) 
of the form: 

xeII µ−
= 0  

Where I is the penetration flux resulting from a initial flux of I0 passing through 
material of thickness x, and a constant µ, called the linear attenuation 
coefficient which defines how quickly the photons are absorbed (and is in 
units of cm-1). 
 
In each of the two cases above, assume each virtual slice represents 1mm of 
lead, and therefore calculate the value of µ for each case based on the values 
derived for the first slice 
 
 



By inserting values for the first slice: 
 
Case 1  … µ = 5.1 cm-1 
 
Case 2 … µ = 0.51 cm-1 
 
Verify that the final transmission of each shield (ie the number of photons 
exiting from slice 7) is consistent with that predicted from the model. 
 
Case 1 … 0.4% transmitted 
 
Case 2 … 42% transmitted 
 
Why don’t the values predicted by the model and the tabulated values match 
perfectly? 
 
The empirical calculation in the table only works well if the absorption in each slice is small, 
as it assumes that the absorption is constant through the slice. The calculation can be made 
more accurate by considering more, thinner slices. 
 
An important question to ask, in each case, how thick does the lead need to 
be to stop all the gamma rays?  
 
This question is impossible – or the answer is infinity! A photon always has a chance of 
penetrating the lead. 
 
This illustrates an important feature of an exponential model - it never reaches 
zero. So radioactive material never stops being radioactive (but it does drop to 
a level of activity negligible compared to the local background) and no lead 
shield can ever give you 100% protection from gamma-rays! 
 
Some more mathematics: 
 
We now have two examples of where an exponential function describes a 
physical situation very well; in the first case it was describing a population is 
subject to a constant probability per unit time, in the second a population is 
subject to a constant probability per unit distance. In fact the reason an 
exponential works so well in each case is that it is the correct solution to the 
differential equation describing what happens to the population.  
 
For the radioactive decay, the change in population per unit time is simply the 
population N, multiplied by the probability of decay for each nucleus. Writing 
that mathematically, we have: 
 

N
dt

dN λ−=  

 
Solving this differential equation gives the familiar formula for radioactive 
decay: 
 

teII λ−
= 0  



 
Further examples of exponentials: 
 
Exponentials occur throughout physics, normally as a result of a physical 
situation which can be described as a constant probability per unit something. 
Can you say how these other exponential behaviours occur? 
 
• Boltzmann distribution 

 
• Discharge of a capacitor 

 
• Terminal velocity 

 
Further reading: 
 
In example 2, we assumed that photoelectric absorption was the only way that 
X-ray photons could be absorbed in material. Other mechanisms include 
Rayleigh scattering, Compton scattering and Pair Production. Read about 
them, and understand how the probabilities for each interaction combine to 
give an overall probability. 
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